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Stable and accurate interface conditions based on the SAT penalty method are
derived for the linear advection—diffusion equation. The conditions are functionally
independent of the spatial order of accuracy and rely only on the form of the dis-
crete operator. We focus on high-order finite-difference operators that satisfy the
summation-by-parts (SBP) property.We prove that stability is a natural consequence
of the SBP operators used in conjunction with the new, penalty type, boundary con-
ditions. In addition, we show that the interface treatments are conservative. The
issue of the order of accuracy of the interface boundary conditions is clarified. New
finite-difference operators of spatial accuracy up to sixth order are constructed which
satisfy the SBP property. These finite-difference operators are shown to admit de-
sign accuracy|fth-order global accuracy) wheip ¢ 1)th-order stencil closures are
used near the boundaries, if the physical boundary conditions and interface con-
ditions are implemented to at leagth-order accuracy. Stability and accuracy are
demonstrated on the nonlinear Burgers’ equation for a 12-subdomain problem with
randomly distributed interfaces. ¢ 1999 Academic Press

Key Wordshigh-order finite-difference; numerical stability; interface conditions;
summation-by-parts.

1. INTRODUCTION

Higher order and spectral schemes are ideally suited for resolving problems where
resolution is essential. Computational aero acoustics (CAA) and computational el
magnetics (CEM) are two such fields requiring high accuracy to resolve the vastly
parate length and time scales involved. High-order (spectral) schemes easily outpe
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conventional low-order schemes on simple problems, where the physical domainis smoc
mapped onto the high-order computational space. The high-order convergence rates of
schemes yield satisfactory results on relatively coarse grids.

A major difficulty in the application of high-order methods to realistic problems is th
issue of applying high-order formulations to complex geometries. Often, generating a 1
sonable grid around a complex configuration is the most difficult aspect of the solut
procedure. Further constraining grids to be smooth and higher order (necessary for h
order methods) severely complicates grid generation around complex configurations.

Many high-order practitioners advocate some form of unstructured framework. Tl
simplifies the grid-generation procedure considerably for complex configurations. Witl
the context of unstructured methods there are a variety of different techniques. We choc
semistructured approach to break the geometry into piecewise smooth “subdomains,” u
quadrilaterals (hexahedron) in two (three) dimensions. Each subdomain is then discret
with a stable tensor product formulation, and the resulting subdomains are patched toge
Notable examples of this approach include the works of Kopriva [1-3], in the context
Chebyshev spectral methods, and the works of Hesthaven [4-6], also in the conte»
Chebyshev methods.

Our contribution to the semistructured approach is based on an extension of the ¢
method presented in [13]. It is valid for high-order finite-difference (FD) discretizatior
and certain spectral formulations (distinct from the works of Kopriva and Hesthave
The SAT procedure is penalty method, where the penalty parameters are determined |
stability considerations or other properties of the numerical scheme. The advantages o
SAT formulation in one domain are detailed in [13] in the context of high-order FD methoc
Most notably, the SAT procedure assures time stabilitgj@temsf equations that have a
bounded energy norm. This is not true in general for other high-order FD methods. Inde
nonpenalty approaches often lead to nonphysical growth in time for systems of equati
even though the discretization operator is stable for the scalar case [13]. Second, the
formulation can easily be extended to several space dimensions (via a tensor product]
to complicated boundary conditions.

In this work, we extend the SAT procedure to the case of multiple domains. We pres
the interface-matching conditions which maintain stability, conservation, and accuracy
multiple domains for all schemes satisfying the semidiscrete summation-by-parts cony
tion. We note that our method (applied in a spectral context) differs from that of Kopri
[3], where the interface BC’s conditions are imposed in a strong sense. In fact, we show
strong imposition of interface BC'’s in conjunction with FD may lead to time instabilities
We also provide a proof (missing in [4]) for stability and time stability of our approact
For simplicity, the proof is presented for the scalar one-dimensional advection—diffusi
equation, but it can be easily extended to the linearized N-S equations as in [5]. Finally,
note that our approach is fully conservative. A detailed proof of the Lax—Wendroff theore
for the penalty approach will appear elsewhere.

In Section 2, we define and describe semidiscrete operators which satisfy the summa
by-parts convention, including explicit and compact finite difference schemes, as well
some spectral methods [14]. In Section 3 we present the SAT formulation for multiple
mains and derive sufficient conditions for stability and time stability for the linear advectio
diffusion equation. In Section 4 we derive a set of parameters that assures stability, as
as conservation for the multiple domain case. In Section 5 we present numerical exam
that demonstrate the efficacy of the SAT interface procedure, as well as the inadeqt
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of imposing strong interface boundary conditions. Furthermore, we show that to main
global accuracy, interface BC's must be specified with the design accuracy of the met
Finally, we present some numerical examples specific to high-order central difference
nigques. In Section 6, we present the conclusions. Finally, in the Appendix we prese
detailed proof of the interface stability condition, followed by the stencils used for four
and sixth-order finite-difference schemes.

2. SPATIAL DISCRETIZATIONS

The stable interface conditions presented in this work are valid for spatial discretizat
of arbitrary accuracy. To achieve this generality, the spatial discretizations must be
specific form. Fortunately, most numerical schemes can be put into the required f
with only minor modifications. To be more precise we consider discrete spatial deriva
operators with the following properties:

First-Derivative Properties

1. The first-derivative operator defining the numerical derivatiye- [(du/dX)o, . .
@u/ax)n]"is

L)

Puy—Qu=0
Pvy — Qv = PT,,

1)

where u=[ug(t), ui(t), ..., un®]", v=[v(Xo, t),. .., v(Xn, )]T, and vy =[(dv/3X)o,
..., (@v/3x)n]". (The vectow is the exact solution.) The truncation erfarsatisfiegTe| =
O(AXx)™, where the quantityAx is defined as the maximum distance between any tv
neighboring grid points.

2. The matrixP is symmetric and positive definitaAx) pl < P < (Ax)ql, wherep and
g are independent dfl with p> 0 andqg > 0.

3. The matrixQ is nearly skew symmetric and satisfies the prop@&ty QT = D, where
the diagonal matri® hasthe fornti ; =[—-1,0,...,0, 1]fori =0, 1, ..., N.Furthermore,

Qoo=—%andQnn=3.

A spatial operator in the form of Eq. (1), which satisfies properties 1 through 3, is refel
to as an SBP operator [7]. All SBP operators automatically lead to an energy estimat
periodic solutions to the linear advection—diffusion equation. In the finite-domain case
energy estimate exists when an SBP operator is combined with specific boundary treatn

Discretization operators that satisfy the SBP framework are remarkably general. Ki
and Scherer [7] first suggested the use of SBP spatial operators in the context of second
central-difference schemes. In Olsson [8-10] and Strand [11], high order finite differe
operators are constructed, based on spatial operators of SBP type. These resulting sc
are strictly stable, which means that the growth rate of the analytic and semi-discrete sol
is identical.

The precise properties of the matricBsand Q provide a constructive means of for-
mulating boundary closures. A discretization begins with a parameterization of sev
points near the boundary of the required accuracy. The parameters are then adjust
that they match the precise requirements of Ehand Q matrices. Strand [12] used the
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SBP approach to construct stable fourth- and sixth-order central-differencing schemes
boundary closures of the appropriate order. Carpenter, Gottlieb, and Abarbanel [13]
tended the SBP formalism to compact implicit operators (fourth-ordee Baétators);
Carpenter and Gottlieb [14] showed that spectral formulations (Galerkin and collocati
can be cased in the SBP framework. Finally, Carpenter and Otto [15] showed that the !
schemes have a natural interface property, and they used this property to derive a cla
multiple-domain schemes referred to as “cyclo-difference” schemes. (The earlier work [
required strong imposition of interface data, whereas the present formulation requires ¢
weak imposition.)

The SBP schemes naturally arise with centered approximations for which the spe
operator is skew symmetric. A more general class of schemes could be formulated in
form

du =
dx — P72 (Q+ Tu, (2)
where the matrixT is symmetric negative definite. The general formulation includes th
entire class of central and upwind schemes. The upwind schemes are automatically s
and accurate because they are obtained by adding a symmetric high-order diffusion ope
to a stable and accurate SBP formulation. We focus, therefore, on the original SBP defini
which includes central, compact, and spectral formulations.

An approach similar to that used on the first-derivative operator can be used for
second-derivative operator. For example, one can seek two positive-definite miataiceds
R such that

Vix — LRV = O(Ax)™

An obvious choice is to take = P andR= Q P~1Q so that the second-derivative operator
is obtained by repeated differentiation with the first-derivative operator. For spectral c
cretizations, differentiating the data twice with the first-derivative operator is equivalent
differentiation with an explicitly formed second-derivative operator. As such, the procedt
yields an accurate representation of the second derivative (modulo roundoff errors).

peated differentiation for finite-difference techniques is acceptable but less desirable 1
other, more compact formulations. A second derivative formed from two first-derivati
operators is unnecessarily wide and inaccurate. The resulting stencil can produce a sol
with an undamped odd—even mode. For this reason, we seek a second-derivative ope
with the following properties.

Second-Derivative Properties

1. The second-derivative operator that defingsis

Puy — (—S'TM +D)Su=0

: (3)
Pvyx — (—S'M + D)Sv = PTey,
where the diagonal matri® has the fornd; ; =[—1,0,...,0,1],i=0,1, ..., N.
2. The matrixM is positive definitefAx)m| <M < (Ax)nl, wherem andn are inde-
pendent ofN with m > 0 andn > 0.
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3. The matrixSis of the form
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[So0 So1 So2 So3

0 1 0
S= ! ° . O (4)
~(AX) : ’

0 1 0
0 1 0
L SN,N—3 SN,N—2 SN,N-1 SN,N.
where
Sulp = vx(Xo) + O(AX)'
)

SuUin = vx(Xn) + O(AX)".

The matrixSis the identity matrix (scaled by the grid spacing), where a discrete repres
tation of the first derivative replaces the first and last rows.
4. The matrixP is that used in the first-derivative operator.

Explicit forms of the matrice$s and M are given in the Appendix for a second-orde
explicit discretization. In addition, the matriis presented up to sixth order.

3. INTERFACE BOUNDARY CONDITIONS FOR MULTIPLE DOMAINS
Consider the linear advection—diffusion equation

92U
6—s
ax2

ou
ot

U
a_
X

= x| <1,t>0. (6)

Suppose that the equation is discretized by a multidomain technique such that the inter
divided arbitrarily into two subintervals1 < x < x; andx; < x < 1. On each subinterval, a
discretization is used that satisfies the SBP properties 1 through 3. We propose impleme

the interface boundary conditions by using a penalty treatment of the form

Ru +aQu =ecRu+ o6 (U|x=xi - U|x=xi) + 02€8§; [(DIU)|x=xi - (DrV)|x=xJ

(7)
Pvi +aQv = eRV + 036 (v|x=xi - u|x=xi) + 04€&; [(Drv)|x=xi — (D U)|x=xi]a
whereu is avector of lengttM, u = [ug(t), us(t), ..., um(t)]", defined in the left domain at
the pointsx, =[Xo=—1, X1, ..., Xm =x)]" ande; =0, ..., 0, 1] is of dimensiorM. In

the right domainy = [vo(t), v1(t), ..., vn(t)]T is defined at the pointg = [Xo = Xi, X1 . . .,
xn =1D]" ande; =[1,0, ..., 0] is of dimensionN.

The second-derivative matric®s 'R and Pr‘l R., as well as the first-derivative matrices
P,*1Q| and P,‘lQr, are defined as in Section 2. The matritgsand D, are any operators
that approximate the first derivative @(AX)™. The obvious first choice would be to use
P'Q and P~1Qr, but this choice is not essential for accuracy or stability. (In Eq. (
we have ignored the physical boundary conditionx at1l andx = —1 for the sake of
simplicity.)
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THEOREM3.1. Consider the schem@) for the advection—diffusion equati@@). If the
matrices P, Qi, P, Qr, R, and R satisfy the first and second derivative properties o
Section2 and

a 2 2
o3=01—4a, og=o02+1, 015—6[02—!-04}, (8)

then(7) is stable.

In the proof which follows, we have without loss of generality considered only tt
interface terms and ignored the terms that arise at the physical boundaries. We as:
that the physical boundary conditions are implemented by stable and accurate nume
procedures. (See Hesthaven and Gottlieb [4] for a possible implementation).

Proof. The proofis based on a simple energy estimate. By premultiplying the equatic
by the vectorai™ andv', respectively, and adding we obtain

d
gelIUlE +IvlE] = 20" eR —aQu + 2vT(eR —aQ)v
+ 201U (Ui — vj) + 2€02ui [(Dju)i — (Drv)i]
+ 203v; (v — Uj) + 2e04vi[(Drv)i — (Diu)i],
where |[u[| =u"Ru, and we have defined;, v, (Dju);, and (Djv); asUlx=x . v|x=x-
(Diu)|x=x , and (D;Vv)|x—x , respectively. The second-derivative properties of Section
lead to
uTRU < —ay (Dyw)? + u; (Dyu); 9)
VIRV < —ar (Drv)f — vi(Drv);, (10)
where the constantg anda, are positive.

By using the first-derivative properties of Section 2 and Egs. (9) and (10) and neglect
the physical boundary terms, we obtain

d
aNW%+MﬁJSMBM (11)

wherew; =[u;, vi, (D;u);, (Drv);], and the interface boundary matiiis defined by

(—a+201) —(o1+o03) €(l+o02) —€02
B_ —(01 + 03) a+ 203 —€0y e(—1+ o04) . (12)
€1+ oo) —€0y —2¢eq 0
—€os e(—1+0q) 0 —2¢0y

Straightforward (although tedious) algebra shows that conditions (8) yield a nonposit
definite matrixB, thus proving stability. Details are presented in Appendix .

In practice, the values of; througho, are determined as follows. The parameters
ar andey are functions from the numerical method and the chosen grid. The diffusi
contribution in the constraint equatien < a/2 — e[o3/4ar + 02 /4] is minimized for
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o2=—ar /(r + o), yielding the expression; <a/2— €[1/4(a; + «)]. The valueo
determines the dissipation at the interface and also influences the effective CFL o
numerical scheme. Values 6f in the range-1 < o1 <0 provide a compromise between
adequate levels of dissipation and acceptable numerical efficiency.

We have shown that the linking of two domains at an interface with the interface conditi
prescribed in Theorem 3.1 is stable in a semidiscrete sense for specific values of the pe
parameters; througho,. The basic methodology can be extended to an arbitrary numl
of subdomains without complication. The only constraint is that the numerical method n
satisfy the SBP framework. The methodology does not rely on subdomain size and doe
require the same SBP operator to be used in each domain. In principle, a finite-differ:
operator of any order, as well as spectral operators on subdomains of arbitrary size
be linked together in a stable manner. Practical details on how to ehhdeeougho, are
included in the results section (Section 6).

In Section 2, we presented the general form of second-derivative operators approy
for this work. We then noted two specific derivative operators that satisfy this form. We r
show that both choices for the matridegandR;) suggested in Section 2 satisfy condition:
(9) and (10) of Theorem 3.1. We start with the first option (iR.= Q P, Q). In this
case, the first derivative matrix in (7) B = P, Q. Thus, the quantity” R u becomes

u"QP'Qu=u"QR AR Qu
= —(F’lelU)TF’I (R'Qu) +ui (A'Qu),,

where we have used the SBP propedty QT = D and have ignored the physical boundan
contribution.
We recall now tha® > (Ax) p, so that

u'Ru=u"QP*Qu
< —(AX)p|(DW)|? + Ui (Dyu); .

Thus, (9) is satisfied withy = (AXx) p. A similar result holds folR, with oy = (AX) p;.
The second choice presented in Section 2 for the second-derivative oferamyris of
the form of Eq. (3):

PR =P -S"M + D)S.

For the purpose of proving stability, we relate the two matribgs- S (in actuality, only
the first and last rows satisfy, = S, they are, however, the only portions of the matrice
that enter the proof):

U'RU = —(Su)"MSu + Ui (Su);
< —(Ax)m|Sul® + U; (Su);.

Thus, (9) is satisfied withy = (Ax)m.

4. CONSERVATION AT THE INTERFACE

The Lax—Wendroff theorem [16] addresses the complexities encountered in solving
linear conservation laws. The theorem states that a convergent numerical approxim
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U, (x, t), computed with a consistent amdnservativeanethod, converges to a weak so-
lution of the conservation law. Note that discrete conservation is necessary to satisfy
conditions of the theorem.

A heuristic definition of conservation (commonly encountered by practitioners) descrik
how the numerical flux function “telescopes” across a domain to the boundaries. The t
quantity of a conserved variable in any region changes only as a result of the flux througt
boundaries of the region. We, however, rely on a broader definition of conservation motive
by the original proof of the Lax—Wendroff theorem. We demand that the numerical fl
telescope across the domain and that all moments of the flux against an arbitrary test fun
telescope across the domain. This additional constraint demands an equivalence bet
the weak forms of the continuous and discrete operators.

We begin by discussing conservation in a single domain. Consider the nonlinear equa
Ui + Fx=00n—-1<x <1andt > 0. Note thatin the linear casé,= aU and we obtain (6)
with € = 0. To obtain the weak form of this equation we multiply by an arbitrary test functio
¢ (X, t) that vanishes on the boundaries. By integrating with respect to space and time
obtain an integral statement of the original differential equation:

1 t 1
/¢de|g_/ / (U¢ + Foy) dx dr = 0.
-1 0 -1

Now consider the semidiscrete equation giverHyy; + QF = 0. Here, we have replaced
the spatial derivativé~ in the continuous case with an SBP derivative operator of ords
(Ax)". By multiplying by the discrete vectgr(xj) = ¢ (the discrete analog of integration)
and integrating with respect to time, we obtain

t
¢TPU|§)—/ (UTP¢ + FTQg¢) dr = 0.
0

Thus, the semidiscrete operator satisfies a weak form similar to that of the continu
operator and asymptotically approaches the continuous operator in the limit of infir
spatial resolution. The special form of tiReand Q matrices present in the SBP operators
enables the semidiscrete operator to mimic the conservation property of the contint
operator.

The equivalence between the continuous and semidiscrete operators is more complic
for multiple domains. The conservation property of the SBP operator does not necess:
apply at an interface boundary. Under very mild restrictions, however, the SBP interf:
operators telescope out to the physical boundaries, as does the continuous operator. Be
conservation is only necessary for the advection terms in the advection—diffusion equa
we sete =0 (see Eq. (6)) and prove conservation for a two-domain discretization. We prc
conservation for a general nonlinear flux. Note that the penalty parameters for this nonlir
case are designategéndos. The resulting conservation condition obtained in the nonlinee
case is slightly different from that obtained in the linear analysis. This difference rest
from different scalings of the penalty parameters.

THEOREM 4.1. Assume the nonlinear equatiaiJ /ot +9F(U)/dx =0 is valid on
the interval—1 <x < 1,t > 0O, divided arbitrarily into two subintervals-1<x < x and
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X; <X < 1. On each subintervah discretization is used that satisfies the SBP framewor
and boundary conditions are imposed via penalties in the form

U+ PTQIF(U) = 61P e [F(u(x)) — F(v(x))]

(13)
Vi + PTQrF(V) = 63P e [F(v(x) — Fu(x))],
whereu = [Ug(t), uy(t), ..., uw(t)]" is defined in the left domain at the poinis=[xg =
—1, %, ..., xu=xi]Tand g =[0, ...0, 1]" is of dimension M with similar definitions on

the right domain. The discretization is conservative provided that the stability condit
03=01 — lis satisfied.

Proof. For multiple domains, we proceed as shown previously in the single-dom
case. Multiplying Egs. (13) by the vectagd P and¢T P;, respectively, yields the set of
equations

¢ Piuc + ¢T QF(U) = 619 (X)) (F(U(X)) — F(v(%)))
¢ PV + ¢T QrF(V) = 639 (%) (F(v(X)) — F(U(X))).
Using the properties o, andQ, we get
¢ "Pu — FTQip + ¢(X)F(U(X)) = 616 (X )(F(U(X)) — F(v(%)))
¢"Pv —FTQrep — dp(X)F (X)) = 63 (X ) (F(v(X)) — F(U(X)))).

By integrating with respect to time and making use of the factghigtcontinuous at the
interface, we get

t t
¢TF’|UIB+¢TF’rVIB=/ (UTH¢t+FTQ|¢)dT+/ (VTP + FT Qi) de
0 0

t
+/ ¢i F(u(x)) (61— 63— Ddr

0

t
+/ ¢i F(v(x))(63 — 61+ D dr.

0

Obviously, the conditioas= 61 — 1 eliminates the interface terms from the expression at
leaves the desired weak form of the semidiscrete equation. Thus, the theorem is prov

5. COMPUTATIONAL RESULTS

In this section we present numerical results that demonstrate the efficacy of the meth
ogy presented in this paper. We begin by showing that the new interface boundary condi
ensure stability, while conventional interface treatments do not. We next show that one
sacrifice, locally, one degree of accuracy when constructing the derivative ma&ri€gs
andR (see Eq. (7)) but not when approximating the matribeandD; . Finally, we present
a multidomain test case showing the capabilities of the new interface methodology.
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Stability

We begin by justifying for the use of the SAT boundary conditions. Reference [13] dete
the advantages of the SAT procedure for a single domain, noting that the principle advan
is the guarantee of stability and time stability for the constant coefficient hyperbolic syste
All conventional boundary closures for fourth- or sixth-order central/compact schern
(no proof, just empirical evidence) lead systemenergy growth in time, despite time
stability for the scalar hyperbolic equatidh + Uy =0. Thus, the SAT procedure and
the projection method [9, 10] are the only know mechanisms for ensuring time stabil
for long time integrations of systems of hyperbolic equations for high-order central F
methods.

The following test problem was used in Ref. [13] to demonstrate the time stability of t
SAT procedure:

au du
ot Tax =0
noo (14)
%0 0<x<1t>0
ot 0dx
u.t) = av(0,t), v(Lt)=puLt), t=0, (15)
u(x,0) =sin2rx, v(x,0)=—sin2rx, 0<x <1 (16)

For reflection coefficients andg satisfying|a| < 1, the solution decays in time, whereas
if |aB|> 1, the solution grows in time. The cage| =1 is neutrally time stable (the?
norm of the solution remains constant in time) and providesxremelysevere test of
the time stability of a numerical method. All conventional boundary procedures displ
nonphysical growth in time agx8| — 1. In addition, merely satisfying the summation
by parts convention for the boundary closure is not sufficient to guarantee time stabil
Both the summation by parts convention and an SAT boundary imposition (or a project
method) are necessary to ensure time stability for systems of equations [13].

We now extend this analysis to the multiple domain context using Eq. (14) as our t
case. Rather than determining time stability by directly integrating Eq. (14) to long time
we focus on eigenvalue analysis of the semidiscrete system. (In [13], an equivalenc
established between the two procedures. Specifically, eigenvalues with positive real
yield solutions that exhibit nonphysical grow in time.) Figure 1 shows the eigenvalu
from the system study using the sixth-order explicit method. The domain is discretiz
using 97 equally spaced points, arranged into 1, 2, 4, and 8 subdomains. The va
a =B =1 are used, corresponding to the neutrally stable case for which the solutior
ux,t)y=sin2r(x —t), v(x,t) = —sin2r(x +t),0<x < 1,t > 0. Alleigenvalues are con-
fined to the left-half plane. Experimental tests for the aases =1 — ¢ confirm that the
rightmost eigenvalue approaches the imaginary axis linearly as the variabl@ Similar
results are obtained for the fourth-order spatial operator. Thus, the fourth- and sixth-oi
schemes are time stable, independent of the number of subdomains.

Conversely, Fig. 2 shows the eigenvalues resulting from a conventional imposition of
interface conditions. (For increased clarity only the 8-subdomains case is shown. Sinr
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TABLE |
L, Reflection Coefficient Required
to Maintain Negative Eigenvalues

Domains o

1.0

0.86
0.60
0.42
0.30

0o hNPE

results are obtained with 2, 4, and 6 subdomains.) The interface condition is obtainec
choosing the upwind value from the left and right interface state for the left-moving a
right-moving characteristic functions. (Note that we do not have a proof of conservati
for this procedure.) The physical boundary conditiong &t0 andx = 1 are imposed via
the SAT procedure to eliminate the obvious single domain instability shown to exist
Ref. [13]. The “upwind” eigenspectrum has many eigenvalues in the right-half plane al
thus, will exhibit growth in time of the solution. To quantify the nature of this interfac
instability, Table | shows a parametric studyir= 8, identifying the maximum value ef

for which time stability can be ensured. Note that as the number of interfaces increases
system requires more dissipation (smaller reflection coefficiersad 8) to ensure time
stability.

This example demonstrates that the new interface boundary conditions are time st
for the constant coefficient hyperbolic system given by Eq. (14). In addition, inappropri
treatment of interface boundaries are shown to generate instabilities for systems of equat
As with the single domain, a summation-by-parts boundary closure, in conjunction w
an SAT penalty treatment for the physical boundary conditions, provides system stabi
where conventional interface treatments failed.

Accuracy: Single Domain

A significant obstacle in dealing with high-order finite-difference schemes is the formu
tion of stable stencils near the boundaries. A uniformly high-order approximation should
used if possible. In most high-order formulations, however, ensuring uniform accuracy
to the boundaries is difficult while maintaining numerical stability. Fortunately, the work «
Gustafsson [17] shows that design accuracy (the designed order of acplira@chieved
in advection—diffusion equations, even if a finite number of points (independé} afe
closed with stencils that are less accurate by one order. Thutls;@der interior discretiza-
tion will asymptotically achievepth-orderL , accuracy with(p — 1)th-order closures near
the boundaries.

Another concern pertaining to numerical accuracy, is the effect of imposing inaccur
boundary conditions. In a numerical simulation, it is often impossible to obtain exact ph
ical boundary data. It is well known that imposing approximate boundary data reduces
accuracy of the solution, if the data is less accurate than the design order of the nume
method. What is not clear, however, is the overall impact of interface boundaries on glc
solution accuracy.
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To address these issues, we consider an advection—diffusion problem, first in a s
domain and then in multiple domains. The nonlinear Burgers’ equation is used,

U U 92U
—4U—=e—, -1<x<1t>0, 17
ot + X 68x2 -~ ~ (17)

with the exact solution

X —ct
€

U(x,t) = —atanh(a ) +c, —oco<X<oo;t<O. (18)

The solution of (17) requires imposition of boundary conditions at each end of the phys
domain. We choose Robin boundary conditions of the form

ou
au(—=1,t) — ﬁ&

au
= (0_ 1 — 00— = .
B g-1(t), yu(dt) 38)( . (D)

We consider the scheme

PU = —Q(%UZ) + eRU + 1y[aU (—1) — B(DU)(—D)] + 2[yU (1) — §(DU)(D)],
(19)

where the matrice®, Q, R satisfy the summation by parts conditions, and the mdrix
is an approximation to the first derivative. The time-advancement scheme is a five-s
fourth-order low-storage Runge—Kutta scheme. The time step is chosen to ensure th
temporal error in the formulation is small relative to the spatial error. The simulation is
to a physical time o = 1, and the viscosity is determined by the vadue 5 x 1072,

At issue is the order of accuracy required in the constructio®,0®, R, and D to
maintain design solution accuracy. We show that for design accyrabg matrice®1Q
andP~1R can be of ordep — 1 locally, whereas the matri® has to approximate the first
derivative to ordelp. This is not surprising since for stability andz, are of order 1AXx,
which, when combined with boundary data terms of design accyraggld local errors of
order p — 1. Thus, the physical boundary conditions imposed with design acciypraoyl
local boundary closures of ordpr— 1 have a similar impact on the global norm of the error

Tables Il and Il present a grid-refinement study on a single domain. Table Il preser
refinement study comparing boundary closures of various accuracy. The classical fo
order explicit scheme is used in all cases in the domain interior, while the bounda

TABLE Il
L, Solution Errors: Convergence Rate of “Fourth-Order” Schemes

(4,4-4-4,4) (3,3-4-3,3) (2,2-4-2,2)
N Logye error Rate Log, error Rate Log, error Rate
33 —3.847 —3.694 —2.974
65 —4.082 231 —4.797 3.66 —4.074 3.65
129 —5.239 3.84 —-5.971 3.90 —5.519 4.80
257 —6.486 4.14 —6.117 3.81 —6.284 2.54
513 —7.731 4.14 —7.276 3.85 —7.048 2.54

1025 —8.960 4.87 —9.455 3.92 —7.898 2.82
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TABLE 11l
L, Solution Errors: Convergence Rate of Uni-
formly Fourth-Order Scheme Using Third-Order
Accurate Boundary Conditions

N Logye error Rate
33 —3.004
65 —4.002 3.32
129 —4.764 2.53
257 —5.636 2.90
513 —6.531 2.97
1025 —7.898 2.82

are closed with stencils of order 4, 3, and 2, respectively. We refer to these scheme
(4,4-4-4,4), (3,3-4-3,3), and (2,2-4-2,2). The derivative tédnn the Robins’ boundary
conditions is approximated t@(Ax%) in all cases. We note that the convergence rate i
Table Il is fourth order for the (4,4-4-4,4) and (3,3-4-3,3) schemes, and third order for
(2,2-4-2,2) scheme. For the (3,3-4-3,3) scheme, both the advection and diffusion stel
are reduced by one order of accuracy near the boundaries. We note that the converc
rate asymptotes to fourth order and that the absolute levels of error are comparable to t
obtained using the (4,4-4-4,4) scheme. The (2,2-4-2,2) scheme is second order local
each boundary and fourth order in the interior. (Only the diffusion terms are treated w
second-order accuracy near the boundaries, while the advection terms are treated with 1
order accuracy. Thus, any degradation in accuracy results from approximating the diffu:
terms.) We note that the convergence rate for this case asymptotes to third order, whi
a reduction in global accuracy by one order. This behavior is consistent with Gustafss
[17] theory, specifically, that global solution accuracy allows a finite number of stencils
be reduced by one order of accuracy.

Table I1l shows the final study, in which the advection and diffusion steneits Q and
P~1R) are uniformly fourth-order accurate (4,4-4-4,4). The physical boundary conditic
(including the matrixD) is approximated t@D(Ax3). The convergence rate in Table IlI
asymptotes to third order, which is a reduction in global accuracy by one order.

This series of tests on the single domain indicates the need to impogghykizal
boundary conditions with design accuracy. However, closing the near boundary ster
with an accuracy that is one order less than the design interior accuracy appears t
sufficient.

Accuracy: The Multidomain Case

We now demonstrate by numerical example that these results generalize to the ca:
multiple domains. Table IV shows a grid-refinement study that compares one and e
spatial domains. The numerical test problem is the previously described Burgers’ equa
using a value ot =102, The equation is discretized as in (7) and the numerical schen
used in both cases is the (3,3,3,3-4-3,3,3,3) SAT scheme with physical boundary condit
(i.e., the matrice®, andD, approximate the first derivative to an accuracyDafAx*). We
note that the convergence rate in Table IV asymptotes to fourth order for both the one-
eight-domain cases.
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TABLE IV
L, Solution Errors: Convergence Rate of Fourth-Order Scheme with Third-
Order Closure at Interfaces on Multiple Domain Problem

1 domains 8 domains
N Logye error Rate Log, error Rate
97 —2.148 —2.125
193 -3.016 2.88 —3.143 3.38
385 —4.214 3.98 —4.485 4.45
769 —5.372 3.85 —5.656 3.38
1537 —6.505 3.76 —6.866 4.02
3063 —7.664 3.85 —8.055 3.95

Another example that directly compares the effects of boundary condition accurac
presented in Table V, using Burgers’ equatier= 10-2) as the test problem. The sixth-
order SAT scheme (5,5,5,5,5,5-6-5,5,5,5,5) is used for the spatial discretization opel
and the interval-1 < x < 1 is divided into eight even subdomains. The physical bounda
conditions and interface condition®|(and D,) are constructed to approximate the firs
derivative to an accuracy of eith@(Ax®) and O(Ax®). Thus, the formal accuracy of
each scheme is sixth- and fifth-order, respectively. Table V compares the solution acct
obtained with the two schemes. The convergence rates (based on the last four refinen
are 5.45and 4.17, respectively. As predicted, both schemes asymptotically converge a
theoretical rates.

These examples demonstrate that design accuracy is achieved with multiple don
if the physical boundary conditions are imposed with design accuracy and the nume
closures near the interfaces are at most one order of accuracy less than the design ac
of the interior scheme.

Nonuniform Domain

The final problem we solve is the nonlinear Burgers’ equation with unequally spa
subdomains and a sixth-order scheme. Details of the numerical discretization are includ
the Appendix. The Burgers’ equation in the form of Eq. (17) is solved throughout the don
with a viscosity parameter ef=10"2. The domain is divided into 12 subdomains, eac

TABLE V
L, Solution Errors: Dependence on Interface Closures for Sixth-Order Scheme

Sixth-order Fifth-order
N Logye error Rate Log, error Rate
97 —2.357 —2.234
193 —3.339 3.26 —3.366 3.76
385 —4.766 474 —4.135 2.55
769 —6.718 6.48 —6.158 6.72
1537 —8.257 5.11 —7.022 2.87

3063 —9.898 5.45 —8.392 4.55
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FIG. 3. The Burgers equation solved using a sixth-order scheme with randomly generated interface poin

with the same number of points and a uniform local discretization. The domain interfa
are placed randomly on the intervall < x <1. The ratio of maximum to minimum sub-
domain size is about 15:1. Figure 3 shows the solution at four different times. The “symbc
at the top of the figure show the positions of the 11 interface points. The profiles are smc
and monotone for this discretization. Figure 4 shows the logarithm of the solution er
plotted as a function of space on the sequence of five grids.

This problem demonstrates the stability and accuracy of the new interface treatme
The discretization asymptote to a convergence rate of sixth order on the sequence of g
Table VI shows the convergence rate of the calculations, for two different values of 1
parametek. The steep gradients are resolved to high-order on all grids #ot0-2. For
e =2 x 1073, the two coarsest grids are not yet achieving high-order accuracy, and two-pc
grid oscillations exist in the solution. Further reductioncafauses numerical instability,

TABLE VI
L, Solution Errors: Convergence of Sixth-Order Scheme with
12 Subdomains and Interfaces Distributed Randomly

€e=1072 €e=2x10"3
N Logye error Rate Log, error Rate
145 —3.090 —1.376
289 —4.641 5.15 —1.865 1.62
577 —5.915 4.22 —3.053 3.95
1153 —7.520 5.33 —4.574 5.05

2305 —9.370 6.15 —5.834 4.18
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FIG. 4. Errors obtained from Burgers equation solved on a sequence of grids with a sixth-order schem

emanating from the interface location, as the gradients pass the interface. Increasin
robustness of the interface conditions for marginally resolved/discontinuous cases i
focus of current research.

6. CONCLUSIONS

We focus on high-order finite difference schemes, which satisfy the summation-by-g
(SBP) discretization framework. We show stable and conservative interface treatm
of arbitrary spatial accuracy for the linear advection—diffusion equation. Problems v
multiple domains and abruptly changing mesh sizes are considered.

Finite-difference operators are shown to admit design accunattydrder global ac-
curacy) when(p — 1)th-order stencil closures are used near boundaries if the “physic
boundary conditions (and interface conditions) are imposedptititorder accuracy. Finite-
difference operators of up to sixth order are constructed which satisfy the constraints ¢
new interface procedures.

Accurate sixth-order calculations are achieved for the nonlinear Burgers equation
12-subdomain problem having randomly distributed interfaces.

APPENDIX I: STABILITY

Here we show the algebra involved in proving Theorem 3.1. We begin by restating of
stability condition presented in Eq. (11) governing the total energy of the system,

d
a[llun% +vliE ] <w Bw, (20)
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wherew; =[u;, vi, (Dju);, (D v);], and the boundary matrix defined in Eq. (12) is definec
by

(—a+201) —(o1+03) €(1+02) —€02
B— —(01 + 03) a+ 203 —€oy e(—1+ 04) 21)
€1+ o9) —€0y —2¢€q 0
—€0) €(—1+ o0y4) 0 —2€0;

The stability of this matrix is easier to analyze if it is rotated with a similarity transfor
mation. Define the new vectér= Sw such that

Ui — v 1 -1 0 0 Ui
W= i Ui + vj . i 1 1 0 O Vi 22)
V2| (Dwi — (D) | /2|0 0 1 -1 | (Du)
(Diw)i + (Drw); 0 0 1 1 (Drv);

The similarity rotation matrix has the proper§} = S~ as can easily be verified. The
rotation matrixS can be used to transform the stability condition defined by Eq. (11) inf
the equivalent condition:

w/Mw; =wSTSMS'sw, =W MW < 0, (23)
where
2(01 + 03) —(—o01+o03+a) €(o2 + 04) €
N~ | Cortosta) 0 —€e(—02+04—1) 0
B €(o2 + 04) —€e(—02+04—1) —e(or + ) e(or —oy)
€ 0 elor — o) —e(ar + )
(24)

To ensure negative definiteness, every submatrix in the migtrimust be negative def-
inite. We observe by inspection that; + o3) < 0 is a necessary condition. Analyzing the
2 x 2 submatrices along the diagonal, we obtain the necessary conditions o3 +a) =0
ande(—o2 + 04 — 1) = 0. Substituting the equalitigs-o;1 + 03+ a) =0 and(—o2 + o4 —

1) =0 into the matrixM' yields

220, —a) 0 €(20,+1) €
S 0 0 0 0
M= €(20+1) 0 —e(oy +a) el —ap) |- (29)
€ 0 el —ag) —elar+a)

A symmetric matrix can be rotated into diagonal form by an orthogonal matrix, makir
the condition of negative semi-definiteness

Ww'UTD'Uw < 0,

whereU is the orthogonal matrix that satisfies D'U = M'. Pre- and postmultiplication
of M' by suitable rotation matriceldl, = R] M' R; yield the equivalent condition

W RIUTD'URW < 0.
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The matrixR;, chosen to yield a diagonal expression for the matfjxis

1 0 0 O
0O 1 0 O
Li= Ls1 0 1 O (26)
Laz O Las 1
with
Lar— —€(202+1)
317 2201 — a)
—2¢(aro2 — 02 + o)
Lar = 5
€(40% + 40, + 1) + (4o — 2a) (o + )
L —(€(202 + 1) + (—4o1 + 238) (o — )
43 =

€(40% + 40, + 1) + (401 — 2a) (o + o)

The diagonal elements &, are

A =220, — Q)
A=0
—€ (e (4022 + 4oy + 1) + (4o1 — 28) (or + oq))
Az =
2(201 — @)
N —4e (are(az + 12+ oqeozz + (40, — 28) Otr)
4= .

€ (402 + 402 + 1) + (4o — 2a) (o + )

These eigenvalues must be less than or equal to zero to ensure stability of the inte
condition. The resulting condition of stability is

Combining this expression with the constraiats=oc; —a and o4 =0, + 1 yields the
conditions of Theorem 3.1.

APPENDIX II: STENCILS

We now present the specific form of the stencils that satisfy the SBP stability requirem
and the accuracy requirements shown necessary in the previous numerical study. At st
order, the discretization matrix for the advection terms that satisfy the congijain® 1 Q
is

= SAx 27)
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where

NI
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NI

(28)
-1 0 1
~1 1]

The discretization matrix for the diffusion terms that satisfies the consti&int

P-1(-STR+ D)Sis

where
[_3
2
1
S=——
AX
and
1
R= —
(AX)

=N

T (Ax)?

|
NI

N[~
|
N
NI

-1

1

1 -21

[—1
D=

-1 2

-1

(29)
(30)
0
1_
(31)
_10 _2
9 9 9
10 _10 2
9 9 9
2 _2 4
9 9 9 |

The matrixR can be shown to be positive definite (and symmetric).
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A fourth-order discretization that satisfies the SBP constraints was originally deri
in the work of Strand [12]. The coefficientd andr?2 below are different from those
proposed by Strand and are chosen so that the resulting discretiZatio® 1 Q has the
standard four-point third-order stencil at the first grid point. This method of constraining f
parametersl, r2, ... generalizes to the sixth-order and eighth-order cases, while provid
good boundary accuracy and dissipation.

The values of 1 andr 2 are

_ —(2177/295369— 1166427

rl 25488
r2= 101952
and the matrice® andQ are
—(216r2+2160r1— 2125 (81r2+ 675r1+ 415 —(72r2+720r 1+ 445 —(108r2+ 756r 1+ 421)
12960 540 1440 1296
(81r2+675r1+415 —(4104r 2+ 32400r 1+ 11225 (1836r 2+ 14580r 1+ 7295 —(216r2+2160r 1+ 665
540 4320 2160 4320
P — AX —(72r2+720r 1+ 445 (1836r 2+ 14580r 1+ 7295 —(4104r 2+ 32400r 1+ 12785 (81r2+675r1+ 335
1440 2160 4320 540
—(108r2+ 756r1+421) —(216r2+2160r 1+ 655 (81r2+675r1+ 335 —(216r2+2160r 1 — 12085
1296 4320 540 12960
and
B (-1 —(864r2+ 6480r 1+ 305 (216r 2+ 1620r 14725 —(864r2+ 6480r 1+ 3335
2 4320 540 4320
(864r2+ 6480r 1+ 305 0 —(864r2+ 6480r1+ 2315 (108r2+810r 1+ 415
4320 1440 270
—(216r2+1620r1+725 (864r2+6480r1+4 2315 0 —(864r2+6480r1+ 785 -1
Q — 540 1440 4320 12
(864r2+ 6480r1+ 3335 —(108r2+810r1+415 (864r2+6480r1+ 785 0 8 =1
4320 270 4320 12 12
1 -8 8 =1
12 12 O 12 12

(32)

(33)

(34)

Only the inflow boundary portion of the matricBsaandQ is shown. The outflow coefficients
are the negative transpose of the inflow coefficients. The mati&symmetric and positive

definite.

The discretization matrix for the diffusion terms that satisfies the constraint

P-1(—STR+ D)Sis:

35 26
12 3
R
12 3
-1 16
12 12
1
A= ——
(AX)?

4 11

NN

—30

o2}

1
3
1
3
6 -1
2 12

-1
12
-1
12
11
12

’

6 -3 16 -1
12 12 12 12
11 5 1
3 2 3 12
-14 19 26 35
3 2 3 12

(39)
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where
- - _ -
-2 4 -3 3 -3 -1
1 0
1 . .
S=— . ; D= . . (36
o | (36)
1 0
2
I -3 —3 -3 -4 3] i 1)

The matrixR is too complicated to report here but it can be shown to be positive defini
Note that the matriR is not needed in the implementation of the scheme and is only used 1
proving stability. This numerical scheme is referred to as (3,3,3,3-4-3,3,3,3), which denc
the fact that the four points nearest to the boundary are closed with third-order formula

A sixth-order discretization that satisfies the SBP constraints was originally derived
the work of Strand [12]. The coefficientd, r2, andr3 below are different from those
proposed by Strand and are chosen so that the resulting discretiZatio® 1 Q has the
standard six-point fifth-order stencil at the first grid point. This choice produces remarka
good stability characteristics at the boundary. The coefficients are

rl= —-3.6224891259957
r2 =96.301901955532 (37)
r3 =-6095813881563

The symmetricP and nearly skew-symmetri@ matrices have the entrie&, = P~1Q,
where

—(14400r 2 4+ 302400 1 — 7420003

P 1) = 36288000
o1 2) - —(75600°3 + 14976002 + 119448001 - 50330023
21722800
o(L 3y = T(9450r3 + 20205012 117766001 — 7225847
340200
(900r 2 + 18900r 1 — 649)
P4 = 226800
(15— (8640013 + 1828800 2 1 15854400 1 - 66150023
: 3110400
(16 (3780003 + 77472002 1 651672001 - 279318239
188640000
(2,2 (3024003 + 60912002 | 49896000 1 — 210294289
: 7257600
22,3 (37803 825752 | 7418251 - 2091977
: 34020
o(2,4) (540013 1044002 + B10000'1 — 3756643
129600
(2.5 — —(5292003 + 111072002 + 95508000 1 - 400851749

2419200
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(86400r 3+ 1828800 2 4- 15854400 1 — 65966279

P20 = 3110400
03,3 - (5130013 110044002 + 95850001 — 39593423
64800
(3.4 (12096013 + 25848002 + 22680000 1 - 93310367
181440
23,5 (540013 -+ 1044002 1 8100001 — 3766003
129600
(900r 2 + 18900r 1 — 37217
P61 = 226800
(4,4  —(L7100r3 + 36480012 + 3195000 1 - 13184703
21600
a5 _ (3780348257512 1 7418251 - 2976857
34020
4,6y - ~(1890r3 + 404102 + 35532011 — 1458223
68040
5.5 (30240013 160912002 + 498960001 — 213056209
7257600
5,6 _ (756003 + 1497600 2 1 119448001 — 5418519)
21722800
o665  —(144002+ sgzzggc% 2 — 36797603
(-1) (38)
q(1, 1) = >
(1 2) _ (4158003 + 8604000 2 + 72954000 1 - 283104553
32659200
q(1 3 _ (1209603 + 2672640 2 + 24192000 1 - 100358119
6531840
(1, 4 _ (252003 + 54240012 + 47880001 ~ 19717139
403200
q(1 5 _ (6048003 + 133632002 + 1209600001 — 485628701
32659200
q(L 6 _ (41580°3+ 8604002 | 72954001 — 3102348)
3265920
92,2 =0
((2. 3 _ (94500003 + 2006352002 | 17471160001 — 7286801279
32659200
(2. 4) _ (211680003 + 4490496002 + 39070080001 — 16231108387
32659200
q(2.5)  —(1653753 + 3516300 2 + 30665250 1 - 126996371

453600
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(604800 3 + 13363200 2 4 120960000 1 — 482536157

10 = 32659200
3,3 =0
q(3,4) = —(6993000 3 + 148096800 2 + 12863340001 — 5353075351
8164800
q(3.5) = (21168000 3 4 449049600 2 + 39070080001 — 1621256118y
32659200
q(3,6) = —(75600r 34 1627200 2 4- 14364000 1 — 5871372}
1209600
a@4,4 =0
q(4.5) = —(9450000 3 + 2006352002 + 17471160001 — 7263657599
32659200
q(4, 6) = (604800 3 + 13363200 2 + 120960000 1 — 485920643
32659200
aG,5 =0
q(5,6) = (415800 3 + 8604000 2 4- 72954000 1 — 28643901Y
32659200
q(6,6) =0.

The matrixP is symmetric and positive definite for this choice of parameters.
The discretization matrix for the diffusion terms that satisfies the consti&int
P-1(-=STR+D)Sis

4812 —3132 +5265 —5080 +2970 —972 +137

1 +137 -147 -255 +470 -285 +93 —13

T 180Ax)2 | —13 4228 —420 4200 +15 12 42
2 —27 270 —490 270 -27 2

. (39)

where

(49 g (=19 20 (=159 6 (-1 1
1 20 2 3 4 5 6 -

The matrixR is too complicated to report here but can be shown to be positive defini
Again, the matrixR is not necessary for implementing the numerical method, being us

only for proving stability.

Finally, we note that SBP boundary closures are more complicated than conventic
discretizations and that inadvertent mistakes in their implementation could have profo
consequences on the stability and accuracy of the procedure. As such, we provide “bl
box” subroutines which implement all the derivative operators used in this study. Se

requests for these routines to m.h.carpenter@larc.nasa.gov.
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